LCOV - code coverage report
Current view: top level - src/PointCloud - LidarInterpreter.cpp (source / functions) Hit Total Coverage
Test: HLR Lines: 151 151 100.0 %
Date: 2018-01-24 10:01:51 Functions: 9 9 100.0 %

          Line data    Source code
       1             : #include "LidarInterpreter.hpp"
       2             : #include <cmath>
       3             : #include <boost/make_shared.hpp>
       4             : #include <pcl/PointIndices.h>
       5             : #include <pcl/io/pcd_io.h>
       6             : #include <pcl/octree/octree.h>
       7             : #include <pcl/octree/octree_impl.h>
       8             : #include <pcl/octree/octree_search.h>
       9             : #include <pcl/point_types.h>
      10             : #include <pcl/search/kdtree.h>
      11             : #include <pcl/segmentation/extract_clusters.h>
      12             : 
      13             : namespace HLR
      14             : {
      15             : namespace PointCloud
      16             : {
      17           1 : const LidarInterpreter::CupMeasurements LidarInterpreter::measured_cup_values =
      18             :     CupMeasurements{0.03, 0.0225, 0.079}; // meters
      19             : // Constant translation from LiDAR's coordinate system to robot arm's
      20             : const CGAL::Simple_cartesian<double>::Vector_3
      21           1 :     LidarInterpreter::lidar_to_robot_arm_translation{1.5, 0, 2};
      22             : 
      23          10 : std::vector<Object> LidarInterpreter::get_objects(
      24             :     const HLR::Vision::CupDetection& detected_cups,
      25             :     const pcl::PointCloud<pcl::PointXYZ>& point_cloud)
      26             : {
      27          10 :     std::vector<Object> objects;
      28          11 :     for (const auto& cup : detected_cups.cups)
      29             :     {
      30           1 :         objects.push_back(convert_cup_to_polyhedron(
      31           2 :             translate_lidar_to_robot_arm(
      32           2 :                 get_centerpoint_from_contour(find_contour(
      33             :                     translate_kinect_to_lidar(detected_cups.frame, cup),
      34             :                     point_cloud))),
      35             :             point_cloud));
      36             :     }
      37          10 :     return objects;
      38             : }
      39             : 
      40          24 : Object LidarInterpreter::convert_cup_to_polyhedron(
      41             :     const LidarInterpreter::Cup& cup_in_robot_arm_space,
      42             :     const pcl::PointCloud<pcl::PointXYZ>& point_cloud)
      43             : {
      44             :     using Point = Object::Point;
      45             :     using Vector = CGAL::Simple_cartesian<double>::Vector_3;
      46             : 
      47             :     // We need an even number of faces to ease generation of rim points.
      48             :     static_assert(number_of_cylinder_faces % 2 == 0);
      49             : 
      50          24 :     Object object{cup_in_robot_arm_space.id,
      51             :                   {},
      52             :                   std::nullopt,
      53             :                   true,
      54             :                   false,
      55             :                   point_cloud,
      56          24 :                   cup_in_robot_arm_space.centerpoint};
      57          24 :     Object::Polyhedron& polyhedron = object.polyhedron;
      58             : 
      59          24 :     const Vector distance_center_top{0, cup_in_robot_arm_space.height / 2, 0};
      60             :     const Point upper_center =
      61          24 :         cup_in_robot_arm_space.centerpoint + distance_center_top;
      62             :     const Point lower_center =
      63          24 :         cup_in_robot_arm_space.centerpoint - distance_center_top;
      64             :     const Object::Polyhedron::vertex_index upper_center_vertex =
      65          24 :         polyhedron.add_vertex(upper_center);
      66             :     const Object::Polyhedron::vertex_index lower_center_vertex =
      67          24 :         polyhedron.add_vertex(lower_center);
      68             : 
      69             :     std::array<Object::Polyhedron::vertex_index, number_of_cylinder_faces>
      70          24 :         upper_vertices;
      71             :     std::array<Object::Polyhedron::vertex_index, number_of_cylinder_faces>
      72          24 :         lower_vertices;
      73         312 :     for (unsigned i = 0; i < number_of_cylinder_faces / 2; ++i)
      74             :     {
      75             :         const Vector unit_translation = {
      76         576 :             sin(2 * i * M_PI / number_of_cylinder_faces),
      77             :             0,
      78         288 :             cos(2 * i * M_PI / number_of_cylinder_faces)};
      79             : 
      80         288 :         upper_vertices[i] = polyhedron.add_vertex(
      81             :             upper_center
      82         576 :             + unit_translation * cup_in_robot_arm_space.upper_radius);
      83         288 :         lower_vertices[i] = polyhedron.add_vertex(
      84             :             lower_center
      85         576 :             + unit_translation * cup_in_robot_arm_space.lower_radius);
      86         288 :         upper_vertices[number_of_cylinder_faces / 2 + i] =
      87             :             polyhedron.add_vertex(upper_center
      88         576 :                                   - unit_translation
      89         864 :                                         * cup_in_robot_arm_space.upper_radius);
      90         288 :         lower_vertices[number_of_cylinder_faces / 2 + i] =
      91             :             polyhedron.add_vertex(lower_center
      92         576 :                                   - unit_translation
      93         864 :                                         * cup_in_robot_arm_space.lower_radius);
      94             :     }
      95             : 
      96        1176 :     for (unsigned i = 0, j = i + 1; i < number_of_cylinder_faces;
      97         576 :          ++i, j = (i + 1) % number_of_cylinder_faces)
      98             :     {
      99         576 :         polyhedron.add_face(
     100         576 :             upper_vertices[i], upper_center_vertex, upper_vertices[j]);
     101         576 :         polyhedron.add_face(
     102         576 :             lower_vertices[i], lower_vertices[j], lower_center_vertex);
     103             : 
     104         576 :         polyhedron.add_face(
     105         576 :             upper_vertices[i], upper_vertices[j], lower_vertices[j]);
     106         576 :         polyhedron.add_face(
     107         576 :             upper_vertices[i], lower_vertices[j], lower_vertices[i]);
     108             :     }
     109             : 
     110          24 :     return object;
     111             : }
     112             : 
     113           2 : LidarInterpreter::Cup LidarInterpreter::translate_lidar_to_robot_arm(
     114             :     const LidarInterpreter::Cup& cup_in_lidar_space)
     115             : {
     116           2 :     Cup robot_arm_cup{cup_in_lidar_space};
     117           2 :     robot_arm_cup.centerpoint =
     118             :         robot_arm_cup.centerpoint + lidar_to_robot_arm_translation;
     119           2 :     return robot_arm_cup;
     120             : }
     121             : 
     122           2 : LidarInterpreter::Cup LidarInterpreter::get_centerpoint_from_contour(
     123             :     const LidarInterpreter::PointCloudWithId& point_cloud_with_id)
     124             : {
     125             :     // left hand cartesian 2D points in meters
     126             :     const pcl::PointCloud<pcl::PointXYZ> point_cloud =
     127           4 :         point_cloud_with_id.first;
     128             :     using PolarPoint = std::pair<double, double>;
     129           2 :     LidarInterpreter::Cup result;
     130           2 :     result.upper_radius = measured_cup_values.upper_radius;
     131           2 :     result.lower_radius = measured_cup_values.lower_radius;
     132           2 :     result.height = measured_cup_values.height;
     133           2 :     result.id = point_cloud_with_id.second;
     134             : 
     135             :     double distance;
     136             :     double theta;
     137           2 :     pcl::PointXYZ nearest_cup_point;
     138           2 :     const int far_far_away =
     139             :         1000; // Anything way further than the nearest point, in meters.
     140           2 :     PolarPoint centerpoint_polar(0, far_far_away);
     141      314162 :     for (const auto& point : point_cloud)
     142             :     {
     143      314160 :         distance =
     144      314160 :             std::sqrt(std::pow(point.x, 2) + std::pow(point.y, 2)); // meters
     145      314160 :         theta = std::acos(point.y / distance);                      // radians
     146      314160 :         if (distance < centerpoint_polar.second)
     147             :         {
     148      308318 :             centerpoint_polar.first = theta;
     149      308318 :             centerpoint_polar.second = distance;
     150      308318 :             nearest_cup_point = point;
     151             :         }
     152             :     }
     153             : 
     154             :     // add the radius on lidar height to the distance so it becomes the
     155             :     // centerpoint point.
     156           2 :     double cup_radius_at_lidar_height =
     157           2 :         result.lower_radius
     158           2 :         + (result.upper_radius - result.lower_radius) / result.height
     159           2 :               * lidar_height;
     160           2 :     centerpoint_polar.second += cup_radius_at_lidar_height;
     161             : 
     162             :     // convert to left hand 3D cartesian in meters
     163           2 :     result.centerpoint = Object::Point(
     164           4 :         std::sin(centerpoint_polar.first) * centerpoint_polar.second,
     165           4 :         result.height / 2,
     166           4 :         std::cos(centerpoint_polar.first) * centerpoint_polar.second);
     167             : 
     168           4 :     return result;
     169             : }
     170             : 
     171           2 : LidarInterpreter::PointCloudWithId LidarInterpreter::find_contour(
     172             :     double angle,
     173             :     const pcl::PointCloud<pcl::PointXYZ>& newest_cloud)
     174             : {
     175             :     // Empty PointCloud which is going to contain the pointcloud of the found
     176             :     // cup to return at the end of this function.
     177           2 :     PointCloudWithId newest_pointcloud;
     178             : 
     179             :     // Check if input contains data to prevent program from crashing.
     180           2 :     if (!newest_cloud.empty())
     181             :     {
     182             :         // This function needs a boost shared_pointer to function.
     183             :         auto cloud_pointer =
     184             :             boost::make_shared<const pcl::PointCloud<pcl::PointXYZ>>(
     185           4 :                 newest_cloud);
     186             :         pcl::PointCloud<pcl::PointXYZ>::Ptr cluster_pointer(
     187           4 :             new pcl::PointCloud<pcl::PointXYZ>);
     188             : 
     189             :         // Variables and setup for search algorithm for Euclidian clustering.
     190             :         pcl::search::KdTree<pcl::PointXYZ>::Ptr kdtree(
     191           4 :             new pcl::search::KdTree<pcl::PointXYZ>);
     192           2 :         kdtree->setInputCloud(cloud_pointer);
     193             : 
     194             :         // Euclidean clustering object.
     195           4 :         pcl::EuclideanClusterExtraction<pcl::PointXYZ> cluster_object;
     196             : 
     197             :         // Set cluster tolerance to 2cm (small values may cause objects to be
     198             :         // divided in several clusters, whereas big values may join objects in a
     199             :         // same cluster).
     200           2 :         cluster_object.setClusterTolerance(0.05);
     201             : 
     202             :         // Set the minimum and maximum number of points that a cluster can have.
     203           2 :         cluster_object.setMinClusterSize(2);
     204           2 :         cluster_object.setMaxClusterSize(100);
     205             : 
     206             :         // Set the search method for Euclidian clustering.
     207           2 :         cluster_object.setSearchMethod(kdtree);
     208             : 
     209             :         // Set input for Euclidian clustering.
     210           2 :         cluster_object.setInputCloud(cloud_pointer);
     211             : 
     212             :         // Output vector for detected clusters.
     213           4 :         std::vector<pcl::PointIndices> clusters;
     214             : 
     215             :         // Function to extract clusters from input cloud.
     216           2 :         cluster_object.extract(clusters);
     217             : 
     218             :         // Loop through every found cluster.
     219          39 :         for (const auto& c : clusters)
     220             :         {
     221             :             // Temporary vector for sorting angles to determine if cluster is
     222             :             // between input angle later on.
     223          75 :             std::vector<double> min_max_angle;
     224             : 
     225             :             // Loop through every point in the cluster.
     226         252 :             for (const auto& k : c.indices)
     227             :             {
     228             :                 // Push back x and y of every point in the min_max_angle vector
     229             :                 // so it can be sorted.
     230         214 :                 min_max_angle.push_back(atan2(
     231         214 :                     cloud_pointer->points[static_cast<unsigned long>(k)].y,
     232         214 :                     cloud_pointer->points[static_cast<unsigned long>(k)].x));
     233             :             }
     234             :             // Check if min_max_angle contains data.
     235          38 :             if (!min_max_angle.empty())
     236             :             {
     237             :                 // Sort angles from low value to high value so the angles can be
     238             :                 // checked later on
     239          38 :                 std::sort(min_max_angle.begin(), min_max_angle.end());
     240             : 
     241             :                 // Check if angle is bigger than min angle and smaller than max
     242             :                 // angle. If true, the found cluster lies within the search
     243             :                 // angle.
     244          76 :                 if (is_angle_in_angle_range(
     245          76 :                         angle, min_max_angle.front(), min_max_angle.back()))
     246             :                 {
     247             :                     // ++ Pointcloud id counter so each found pointcloud cup
     248             :                     // will be unique.
     249           1 :                     highest_pointcloud_id++;
     250             : 
     251             :                     // Set current cup id of pointcloud to return.
     252           1 :                     newest_pointcloud.second =
     253           1 :                         static_cast<std::uint32_t>(highest_pointcloud_id);
     254             : 
     255             :                     // Loop through every point in the cluster again.
     256           4 :                     for (const auto& point : c.indices)
     257             :                     {
     258             :                         // Put Points in pointcloud to return because it's sure
     259             :                         // now this is the right cluster (cup) we are looking
     260             :                         // for.
     261           6 :                         newest_pointcloud.first.points.push_back(
     262             :                             cloud_pointer
     263           3 :                                 ->points[static_cast<unsigned long>(point)]);
     264             :                     }
     265             : 
     266             :                     // Set the rest of the pointcloud parameters.
     267           1 :                     newest_pointcloud.first.width =
     268           1 :                         static_cast<unsigned int>(cloud_pointer->points.size());
     269           1 :                     newest_pointcloud.first.height = 0;
     270           1 :                     newest_pointcloud.first.is_dense = true;
     271             : 
     272             :                     // Push information back to pointcloud to return.
     273           1 :                     pointcloud_database.push_back(newest_pointcloud);
     274             : 
     275             :                     // Because the right cluster (cup) is found in the given
     276             :                     // angle break out of loop.
     277           1 :                     break;
     278             :                 }
     279             :             }
     280             :         }
     281             :     }
     282             :     // Return pointcloud to return.
     283           2 :     return newest_pointcloud;
     284             : }
     285             : 
     286           3 : double LidarInterpreter::translate_kinect_to_lidar(
     287             :     const std::shared_ptr<cv::Mat>& distance_frame,
     288             :     const cv::Point& location_cup)
     289             : {
     290             :     // Gathering variables and storing them in an easy to read format.
     291           3 :     const int x_resolution_img = (*distance_frame).cols;
     292           3 :     const int x_coord_cup = x_resolution_img / 2 - location_cup.x;
     293           3 :     const double viewing_angle_kinect = (70.6 / 180.0) * M_PI; // radians
     294             :     const auto distance_kinect_cup =
     295           3 :         (*distance_frame).at<float>(location_cup.x, location_cup.y) / 1000.0;
     296             : 
     297             :     // Calculating the angle of the Kinect to the cup.
     298           3 :     const double angle_kinect_cup =
     299           6 :         std::asin(2 * x_coord_cup
     300           3 :                   * (std::sin(viewing_angle_kinect / 2) / x_resolution_img));
     301             : 
     302             :     // Translating the angle of the Kinect to the Lidar.
     303           3 :     double angle_lidar_cup =
     304           6 :         std::atan2((distance_kinect_lidar
     305           3 :                     - distance_kinect_cup * std::sin(angle_kinect_cup)),
     306           3 :                    (distance_kinect_cup * std::cos(angle_kinect_cup)));
     307             : 
     308           3 :     return angle_lidar_cup;
     309             : }
     310             : 
     311          43 : bool LidarInterpreter::is_angle_in_angle_range(double input,
     312             :                                                double min_angle,
     313             :                                                double max_angle)
     314             : {
     315          43 :     double biggest = 2 * M_PI;
     316          43 :     if (input < 0)
     317             :     {
     318          13 :         input = fmod((2 * M_PI + fmod(input, 2 * M_PI)), 2 * M_PI);
     319             :     }
     320          43 :     if (min_angle < 0)
     321             :     {
     322          18 :         min_angle = fmod((2 * M_PI + fmod(min_angle, 2 * M_PI)), 2 * M_PI);
     323             :     }
     324          43 :     if (max_angle < 0)
     325             :     {
     326          14 :         max_angle = fmod((2 * M_PI + fmod(max_angle, 2 * M_PI)), 2 * M_PI);
     327             :     }
     328             : 
     329          43 :     if (input >= min_angle && input >= max_angle)
     330             :     {
     331           2 :         biggest = input;
     332             :     }
     333          41 :     else if (min_angle >= input && min_angle >= max_angle)
     334             :     {
     335           5 :         biggest = min_angle;
     336             :     }
     337          36 :     else if (max_angle >= input && max_angle >= min_angle)
     338             :     {
     339          36 :         biggest = max_angle;
     340             :     }
     341             : 
     342          43 :     double translation = 2 * M_PI - biggest;
     343          43 :     input = fmod((translation + input), 2 * M_PI);
     344          43 :     min_angle = fmod((translation + min_angle), 2 * M_PI);
     345          43 :     max_angle = fmod((translation + max_angle), 2 * M_PI);
     346             : 
     347          43 :     if (min_angle > max_angle)
     348             :     {
     349          36 :         std::swap(min_angle, max_angle);
     350             :     }
     351          43 :     if (max_angle > M_PI)
     352             :     {
     353          41 :         return input >= max_angle;
     354             :     }
     355           2 :     return input <= max_angle;
     356             : }
     357             : 
     358             : } // namespace PointCloud
     359           3 : } // namespace HLR

Generated by: LCOV version 1.12